Unlocking Row Information in PyTorch Sparse Tensors: Exploring Alternatives to torch.sparse.Tensor.row_indices


Understanding Sparse Tensors

  • PyTorch offers two main sparse tensor formats: Coordinate List (COO) and Compressed Sparse Row (CSR).
  • Sparse tensors represent matrices where most elements are zero. They store only the non-zero elements and their corresponding indices, making them memory-efficient for large datasets with many zeros.

torch.sparse.Tensor.row_indices

  • It returns a LongTensor containing the indices of the first element in each row of the sparse matrix.
  • This attribute is specifically applicable to CSR format sparse tensors.

Key Points

  • Availability
    Only for CSR format sparse tensors. COO format tensors don't have a direct equivalent for row_indices.
  • Data Type
    LongTensor (torch.long)
  • Functionality
    • row_indices provides a way to efficiently access the starting positions of each row's non-zero elements in the compressed format.
    • This is useful for operations that require iterating over rows or performing row-wise computations.

Example

import torch

# Create a sparse CSR tensor
indices = torch.tensor([[0, 1, 2], [0, 0, 1]])
values = torch.tensor([3, 1, 2])
size = (2, 3)
sparse_tensor = torch.sparse_csr_tensor(indices, values, size)

# Access row indices
row_indices = sparse_tensor.crow_indices()
print(row_indices)  # Output: tensor([0, 1])

In essence

  • It's a valuable tool for sparse matrix operations that involve row-wise processing.
  • row_indices helps navigate the compressed structure of CSR tensors by providing starting points for each row's non-zero elements.
  • For more comprehensive sparse tensor manipulation, explore PyTorch's sparse functionality, including methods like sparse.mm for matrix multiplication and other sparse-specific operations.
  • If you're working with COO format sparse tensors, you might need to construct row information using torch.gather or similar operations to achieve row-wise access.


Accessing Elements by Row

This code shows how to use row_indices to iterate over rows and access their corresponding elements:

import torch

# Create a sparse CSR tensor
indices = torch.tensor([[0, 1, 2], [0, 0, 1]])
values = torch.tensor([3, 1, 2])
size = (2, 3)
sparse_tensor = torch.sparse_csr_tensor(indices, values, size)

# Get row indices
row_indices = sparse_tensor.crow_indices()

# Iterate over rows and access elements
for i, row_start in enumerate(row_indices):
  # Slice to get the non-zero elements in the current row
  row_elements = sparse_tensor.values[row_start: (row_indices[i + 1] if i < len(row_indices) - 1 else None)]
  print(f"Row {i}: {row_elements}")

This code iterates through row_indices and uses the starting index (inclusive) for each row to slice the values tensor. This way, it extracts the non-zero elements belonging to that specific row.

Row-wise Operations (Using torch.gather for COO)

This example demonstrates how to achieve row-wise operations even with a COO format sparse tensor:

import torch

# Create a sparse COO tensor
indices = torch.tensor([[0, 1, 2], [0, 0, 1]])
values = torch.tensor([3, 1, 2])
size = (2, 3)
sparse_tensor = torch.sparse_coo_tensor(indices, values, size)

# Simulate row-wise operation (e.g., adding a constant to each row)
def row_wise_add(sparse_tensor, constant):
  row_indices = sparse_tensor.indices[0]  # Get row indices from COO
  unique_rows, row_counts = torch.unique(row_indices, return_counts=True)
  updated_values = torch.zeros(sparse_tensor.shape[0])  # Create a dense tensor for updates
  for i, row in enumerate(unique_rows):
    start = row_counts[:i].sum()  # Calculate starting index for the row
    end = start + row_counts[i]
    updated_values[row] = sparse_tensor.values[start:end] + constant  # Add constant to row elements
  return torch.sparse_coo_tensor(sparse_tensor.indices, updated_values, size)

# Apply row-wise addition
updated_tensor = row_wise_add(sparse_tensor, 5)
print(updated_tensor)

This code constructs a workaround for COO tensors. It extracts row indices, calculates starting positions for each row using torch.unique and torch.cumsum, and then iterates over rows to perform the desired operation (adding a constant in this case) on the corresponding elements in the values tensor. Finally, it creates a new sparse COO tensor with the updated values.



COO Format Sparse Tensors

  • Since COO format doesn't have a direct equivalent to row_indices, you can achieve row-wise access by manually constructing row information:
    • Use torch.gather to collect non-zero elements belonging to a specific row based on the corresponding row index in the indices tensor.
    • Iterate through the unique row indices to process each row individually.
import torch

# Create a sparse COO tensor
indices = torch.tensor([[0, 1, 2], [0, 0, 1]])
values = torch.tensor([3, 1, 2])
size = (2, 3)
sparse_tensor = torch.sparse_coo_tensor(indices, values, size)

# Access elements by row using gather
def access_row_elements(sparse_tensor, row_index):
  row_mask = indices[0] == row_index  # Filter for elements in the desired row
  row_elements = sparse_tensor.values[row_mask]
  return row_elements

# Example usage
row_to_access = 1
row_elements = access_row_elements(sparse_tensor, row_to_access)
print(f"Elements in row {row_to_access}: {row_elements}")

Row-wise Operations

  • For each row, calculate the starting and ending indices within the values tensor using torch.unique and torch.cumsum. Then, perform the operation on the corresponding elements.
  • If you only need to perform row-wise operations (e.g., adding a constant to each row), you can iterate through the unique row indices in the indices tensor for COO format.
import torch

# (Code from previous example...)

# Row-wise addition
def row_wise_add(sparse_tensor, constant):
  row_indices = sparse_tensor.indices[0]  # Get row indices from COO
  unique_rows, row_counts = torch.unique(row_indices, return_counts=True)
  updated_values = torch.zeros(sparse_tensor.shape[0])  # Create a dense tensor for updates
  for i, row in enumerate(unique_rows):
    start = row_counts[:i].sum()  # Calculate starting index for the row
    end = start + row_counts[i]
    updated_values[row] = sparse_tensor.values[start:end] + constant  # Add constant to row elements
  return torch.sparse_coo_tensor(sparse_tensor.indices, updated_values, size)

# Apply row-wise addition
updated_tensor = row_wise_add(sparse_tensor, 5)
print(updated_tensor)
  • Always choose the method that aligns with your sparse tensor format and the specific operation you want to perform.
  • For COO format, use techniques like torch.gather and row-wise iteration to achieve similar results.
  • For CSR format, torch.sparse.Tensor.row_indices is the most efficient way to access row information.