Unlocking Row Information in PyTorch Sparse Tensors: Exploring Alternatives to torch.sparse.Tensor.row_indices
Understanding Sparse Tensors
- PyTorch offers two main sparse tensor formats: Coordinate List (COO) and Compressed Sparse Row (CSR).
- Sparse tensors represent matrices where most elements are zero. They store only the non-zero elements and their corresponding indices, making them memory-efficient for large datasets with many zeros.
torch.sparse.Tensor.row_indices
- It returns a LongTensor containing the indices of the first element in each row of the sparse matrix.
- This attribute is specifically applicable to CSR format sparse tensors.
Key Points
- Availability
Only for CSR format sparse tensors. COO format tensors don't have a direct equivalent forrow_indices
. - Data Type
LongTensor (torch.long) - Functionality
row_indices
provides a way to efficiently access the starting positions of each row's non-zero elements in the compressed format.- This is useful for operations that require iterating over rows or performing row-wise computations.
Example
import torch
# Create a sparse CSR tensor
indices = torch.tensor([[0, 1, 2], [0, 0, 1]])
values = torch.tensor([3, 1, 2])
size = (2, 3)
sparse_tensor = torch.sparse_csr_tensor(indices, values, size)
# Access row indices
row_indices = sparse_tensor.crow_indices()
print(row_indices) # Output: tensor([0, 1])
In essence
- It's a valuable tool for sparse matrix operations that involve row-wise processing.
row_indices
helps navigate the compressed structure of CSR tensors by providing starting points for each row's non-zero elements.
- For more comprehensive sparse tensor manipulation, explore PyTorch's sparse functionality, including methods like
sparse.mm
for matrix multiplication and other sparse-specific operations. - If you're working with COO format sparse tensors, you might need to construct row information using
torch.gather
or similar operations to achieve row-wise access.
Accessing Elements by Row
This code shows how to use row_indices
to iterate over rows and access their corresponding elements:
import torch
# Create a sparse CSR tensor
indices = torch.tensor([[0, 1, 2], [0, 0, 1]])
values = torch.tensor([3, 1, 2])
size = (2, 3)
sparse_tensor = torch.sparse_csr_tensor(indices, values, size)
# Get row indices
row_indices = sparse_tensor.crow_indices()
# Iterate over rows and access elements
for i, row_start in enumerate(row_indices):
# Slice to get the non-zero elements in the current row
row_elements = sparse_tensor.values[row_start: (row_indices[i + 1] if i < len(row_indices) - 1 else None)]
print(f"Row {i}: {row_elements}")
This code iterates through row_indices
and uses the starting index (inclusive) for each row to slice the values
tensor. This way, it extracts the non-zero elements belonging to that specific row.
Row-wise Operations (Using torch.gather for COO)
This example demonstrates how to achieve row-wise operations even with a COO format sparse tensor:
import torch
# Create a sparse COO tensor
indices = torch.tensor([[0, 1, 2], [0, 0, 1]])
values = torch.tensor([3, 1, 2])
size = (2, 3)
sparse_tensor = torch.sparse_coo_tensor(indices, values, size)
# Simulate row-wise operation (e.g., adding a constant to each row)
def row_wise_add(sparse_tensor, constant):
row_indices = sparse_tensor.indices[0] # Get row indices from COO
unique_rows, row_counts = torch.unique(row_indices, return_counts=True)
updated_values = torch.zeros(sparse_tensor.shape[0]) # Create a dense tensor for updates
for i, row in enumerate(unique_rows):
start = row_counts[:i].sum() # Calculate starting index for the row
end = start + row_counts[i]
updated_values[row] = sparse_tensor.values[start:end] + constant # Add constant to row elements
return torch.sparse_coo_tensor(sparse_tensor.indices, updated_values, size)
# Apply row-wise addition
updated_tensor = row_wise_add(sparse_tensor, 5)
print(updated_tensor)
This code constructs a workaround for COO tensors. It extracts row indices, calculates starting positions for each row using torch.unique
and torch.cumsum
, and then iterates over rows to perform the desired operation (adding a constant in this case) on the corresponding elements in the values
tensor. Finally, it creates a new sparse COO tensor with the updated values.
COO Format Sparse Tensors
- Since COO format doesn't have a direct equivalent to
row_indices
, you can achieve row-wise access by manually constructing row information:- Use
torch.gather
to collect non-zero elements belonging to a specific row based on the corresponding row index in theindices
tensor. - Iterate through the unique row indices to process each row individually.
- Use
import torch
# Create a sparse COO tensor
indices = torch.tensor([[0, 1, 2], [0, 0, 1]])
values = torch.tensor([3, 1, 2])
size = (2, 3)
sparse_tensor = torch.sparse_coo_tensor(indices, values, size)
# Access elements by row using gather
def access_row_elements(sparse_tensor, row_index):
row_mask = indices[0] == row_index # Filter for elements in the desired row
row_elements = sparse_tensor.values[row_mask]
return row_elements
# Example usage
row_to_access = 1
row_elements = access_row_elements(sparse_tensor, row_to_access)
print(f"Elements in row {row_to_access}: {row_elements}")
Row-wise Operations
- For each row, calculate the starting and ending indices within the
values
tensor usingtorch.unique
andtorch.cumsum
. Then, perform the operation on the corresponding elements. - If you only need to perform row-wise operations (e.g., adding a constant to each row), you can iterate through the unique row indices in the
indices
tensor for COO format.
import torch
# (Code from previous example...)
# Row-wise addition
def row_wise_add(sparse_tensor, constant):
row_indices = sparse_tensor.indices[0] # Get row indices from COO
unique_rows, row_counts = torch.unique(row_indices, return_counts=True)
updated_values = torch.zeros(sparse_tensor.shape[0]) # Create a dense tensor for updates
for i, row in enumerate(unique_rows):
start = row_counts[:i].sum() # Calculate starting index for the row
end = start + row_counts[i]
updated_values[row] = sparse_tensor.values[start:end] + constant # Add constant to row elements
return torch.sparse_coo_tensor(sparse_tensor.indices, updated_values, size)
# Apply row-wise addition
updated_tensor = row_wise_add(sparse_tensor, 5)
print(updated_tensor)
- Always choose the method that aligns with your sparse tensor format and the specific operation you want to perform.
- For COO format, use techniques like
torch.gather
and row-wise iteration to achieve similar results. - For CSR format,
torch.sparse.Tensor.row_indices
is the most efficient way to access row information.