Working with Complex Arrays in NumPy C-API: Accessing, Manipulating, and Alternatives


NumPy C-API and Data Types

  • One crucial aspect is handling different data types that NumPy arrays can hold.
  • The NumPy C-API provides functions and structures to interact with NumPy arrays from C code.

NPY_CDOUBLE Enumerator

  • The size of NPY_CDOUBLE is typically 16 bytes (8 bytes for real and 8 bytes for imaginary).
  • In simpler terms, it signifies an array element that can store a complex number with both a real and imaginary part, each being a double-precision floating-point value.
  • It represents the data type for a 64-bit complex double-precision floating-point number.
  • NPY_CDOUBLE is an enumerator value defined in the NumPy C-API's data type API.

Usage in C Code

#include <numpy/arrayobject.h>

int main() {
    // Create a descriptor for a complex double array
    PyArray_Descr *descr = PyArray_DescrFromType(NPY_CDOUBLE);

    // Define dimensions for the array
    npy_intp dims[] = {2, 3};  // 2 rows, 3 columns

    // Create a new NumPy array (error handling omitted for brevity)
    PyArrayObject *arr = PyArray_SimpleNew(2, dims, NPY_CDOUBLE);

    // Access and potentially manipulate elements using appropriate casting
    npy_cdouble *data = (npy_cdouble *)PyArray_DATA(arr);
    for (int i = 0; i < 6; i++) {
        data[i].real = i * 0.5;  // Set real part
        data[i].imag = i * 0.25; // Set imaginary part
    }

    // Release resources (error handling omitted)
    Py_DECREF(arr);
    Py_DECREF(descr);

    return 0;
}

Key Points

  • Typecasting is essential when accessing or manipulating complex array elements using pointers like npy_cdouble*.
  • The PyArray_SimpleNew function creates a new NumPy array with the specified dimensions and data type.
  • The PyArray_DescrFromType function creates a descriptor object representing the data type.
  • NPY_CDOUBLE is used to specify the data type when creating or interacting with complex double-precision arrays.
  • For more advanced use cases, consider using higher-level functions and abstractions provided by the NumPy C-API.


Accessing Existing Array Elements

This code demonstrates accessing and printing the elements of an existing complex double-precision NumPy array passed from Python:

#include <Python.h>
#include <numpy/arrayobject.h>

PyObject* access_complex_array(PyObject* arr) {
  // Check if the object is a NumPy array
  if (!PyArray_Check(arr)) {
    PyErr_SetString(PyExc_TypeError, "Expected a NumPy array");
    return NULL;
  }

  // Ensure the array has complex double-precision data type
  if (PyArray_TYPE(arr) != NPY_CDOUBLE) {
    PyErr_SetString(PyExc_TypeError, "Expected complex double array");
    return NULL;
  }

  // Get dimensions and data pointer
  npy_intp ndim = PyArray_NDIM(arr);
  npy_intp* dims = PyArray_DIMS(arr);
  npy_cdouble* data = (npy_cdouble*)PyArray_DATA(arr);

  // Loop through elements and print real and imaginary parts
  for (int i = 0; i < PyArray_SIZE(arr); i++) {
    printf("Element (%d): real = %.2f, imag = %.2f\n", i, data[i].real, data[i].imag);
  }

  Py_INCREF(arr);  // Increment reference count for the returned array
  return arr;
}

Performing Operations on Array Elements

This code showcases basic arithmetic operations on elements of a complex double-precision NumPy array:

#include <numpy/arrayobject.h>

void complex_operations(PyArrayObject* arr) {
  // Check for valid array and data type (same as previous example)

  npy_cdouble* data = (npy_cdouble*)PyArray_DATA(arr);
  int n = PyArray_SIZE(arr);

  // Add a constant value (1+2j) to each element
  npy_cdouble complex_const = {1.0, 2.0};
  for (int i = 0; i < n; i++) {
    data[i].real += complex_const.real;
    data[i].imag += complex_const.imag;
  }

  // Multiply each element by another complex number (3-4j)
  complex_const.real = 3.0;
  complex_const.imag = -4.0;
  for (int i = 0; i < n; i++) {
    double temp_real = data[i].real * complex_const.real - data[i].imag * complex_const.imag;
    data[i].imag = data[i].real * complex_const.imag + data[i].imag * complex_const.real;
    data[i].real = temp_real;
  }
}

Interfacing with Python (Illustrative)

Python (example.py)

import numpy as np
from ctypes import c_double, c_void_p

def create_complex_array(n):
  # Create a complex double array in Python
  arr = np.empty((n, 2), dtype=np.complex128)
  # ... populate the array with values ...
  return arr.ctypes.data_as(c_void_p)  # Return memory address

# Example usage
c_complex_double = c_double * 2  # Complex double structure for ctypes
complex_arr_ptr = create_complex_array(5)
# Call the C function (implementation shown below)
process_complex_array(complex_arr_ptr, 5)
#include <Python.h>
#include <numpy/arrayobject.h>

void process_complex_array(void* data, int n) {
  // Cast data pointer to an array of npy_cdouble
  npy_cdouble* arr = (npy_cdouble*)data;

  // Perform some operation on the array elements ...
  for (int i = 0; i < n; i++)


    • If you need a different complex number precision, you can use other NumPy data type enumerators for complex numbers:
      • NPY_CFLOAT: Complex single-precision floating-point (4 bytes)
      • NPY_CLONGDOUBLE: Complex long double-precision (typically 16 bytes on most systems, but can vary)
  1. Working with Real and Imaginary Parts Separately

    • If you only need to access or manipulate the real and imaginary parts independently, you can create a NumPy array with a standard real number data type (e.g., NPY_DOUBLE) and access its elements as needed. This might be less memory-efficient for very large arrays.
  2. Higher-Level Libraries

    • Consider using libraries like Cython or tools like ctypes for more convenient interaction with NumPy arrays from C code. These approaches offer abstractions over the raw C-API, making it easier to handle data types and memory management.

Choosing the Right Approach

The best approach depends on your specific needs and the level of control you require.

  • For simpler interactions or if you prefer a higher-level abstraction, explore libraries like Cython or ctypes.
  • If precision is less critical or you need different complex number types, consider the alternative data types mentioned above.