Alternative Approaches to Element-Wise Clipping in NumPy


#include <numpy/arrayobject.h>

void custom_fastclip(PyArrayObject *arr, double minval, double maxval) {
  npy_intp iterator_size = PyArray_NDIM(arr);
  npy_intp *iterator_strides = PyArray_STRIDES(arr);
  char *iterator_data = PyArray_DATA(arr);

  // Iterate over the array using PyArray_Iter
  PyArrayIterObject *iter = PyArray_IterNew(arr, iterator_size);
  npy_intp index;

  while (PyArray_IterNext(iter, &index) != NPY_ITER_NOTDONE) {
    // Cast data pointer to the appropriate type based on the array's dtype
    double *data_ptr = (double *)iterator_data;
    if (*data_ptr < minval) {
      *data_ptr = minval;
    } else if (*data_ptr > maxval) {
      *data_ptr = maxval;
    }

    // Move to the next element in the iteration
    iterator_data += iterator_strides[0];
  }

  PyArray_IterClose(iter);
}

This code defines a custom_fastclip function that takes a NumPy array, minimum clip value, and maximum clip value as arguments. It iterates over the array using PyArray_IterNext and clips the elements in-place using a type-casted data pointer.





  1. Vectorized clipping using NumPy functions

    NumPy provides vectorized functions like np.clip that can clip elements in-place or return a new clipped array. This approach is generally simpler and more readable than using the C-API.

    import numpy as np
    
    arr = np.array([1, 5, -2, 8])
    minval = 0
    maxval = 6
    
    # Clip in-place
    np.clip(arr, minval, maxval, out=arr)
    print(arr)  # Output: [1 5 0 6]
    
    # Clip and return a new array
    clipped_arr = np.clip(arr, minval, maxval)
    print(clipped_arr)  # Output: [1 5 0 6]
    
  2. Using np.where for conditional assignment

    You can leverage np.where to create a mask and conditionally assign clipped values:

    import numpy as np
    
    arr = np.array([1, 5, -2, 8])
    minval = 0
    maxval = 6
    
    arr = np.where(arr < minval, minval, arr)
    arr = np.where(arr > maxval, maxval, arr)
    print(arr)  # Output: [1 5 0 6]