Alternatives to pandas.DataFrame.from_records for Building DataFrames
Purpose
pandas.DataFrame.from_records
is a function used to create a DataFrame object from various structured data sources:- Structured NumPy arrays
- Sequences of tuples (where each tuple represents a row)
- Sequences of dictionaries (where each dictionary represents a row)
- Existing DataFrames (for reshaping or copying)
How it Works
- Data Input
You provide the data in one of the supported formats mentioned above. - Column Creation
from_records
automatically infers column names from the first element of your data (unless you specifynames
argument). If using dictionaries, the dictionary keys become column names. - Data Population
Each element in the data sequence becomes a row in the DataFrame. For tuples, elements at corresponding positions map to columns. For dictionaries, dictionary values populate the columns.
Example
import pandas as pd
# Using a list of dictionaries
data = [{'name': 'Alice', 'age': 30}, {'name': 'Bob', 'age': 25}]
df = pd.DataFrame.from_records(data)
print(df)
# Output:
name age
0 Alice 30
1 Bob 25
Key Arguments
coerce_float
: Attempt to convert values to numerics (optional)exclude
: Columns to exclude from the DataFrame (optional)index
: Field to use as the row index (optional)names
: A list of column names to use (optional)data
: The structured data to convert (required)
Benefits
- Efficient for handling structured data.
- Flexible for different data formats.
- Convenient way to create DataFrames from various data structures.
from_records
is a versatile tool for constructing DataFrames in pandas, allowing you to work with data from different sources effectively.- For complex data structures or nested dictionaries, consider using pandas' higher-level functions like
pd.read_csv
orpd.read_json
for more specialized parsing.
Using a list of tuples
import pandas as pd
data = [('Alice', 30), ('Bob', 25), ('Charlie', 42)]
df = pd.DataFrame.from_records(data, columns=['name', 'age'])
print(df)
# Output:
name age
0 Alice 30
1 Bob 25
2 Charlie 42
Specifying column names
import pandas as pd
data = [{'name': 'Alice', 'age': 30}, {'city': 'New York', 'age': 25}]
df = pd.DataFrame.from_records(data, columns=['name', 'city', 'age']) # Order matters
print(df)
# Output (assuming 'city' doesn't exist in the data):
name city age
0 Alice None 30
1 None New York 25
Setting the index
import pandas as pd
data = [{'name': 'Alice', 'age': 30}, {'name': 'Bob', 'age': 25}]
df = pd.DataFrame.from_records(data, index='name')
print(df)
# Output:
age
name
Alice 30
Bob 25
Excluding columns
import pandas as pd
data = [{'name': 'Alice', 'age': 30, 'city': 'New York'}, {'name': 'Bob', 'age': 25}]
df = pd.DataFrame.from_records(data, exclude=['city'])
print(df)
# Output:
name age
0 Alice 30
1 Bob 25
import pandas as pd
data = [{'name': 'Alice', 'age': '30'}, {'name': 'Bob', 'age': '25.5'}]
df = pd.DataFrame.from_records(data, coerce_float=True)
print(df.dtypes)
# Output:
# name object
# age float64
# dtype: object
pandas.DataFrame constructor
- Use the constructor directly if your data is already in a suitable format:
- List of dictionaries:
data = [{'name': 'Alice', 'age': 30}, {'name': 'Bob', 'age': 25}] df = pd.DataFrame(data)
- List of tuples (assuming consistent column order):
data = [('Alice', 30), ('Bob', 25), ('Charlie', 42)] df = pd.DataFrame(data)
- List of dictionaries:
pandas.DataFrame.from_dict
- Ideal for dictionaries, especially when you want more control over column order:
orient='columns'
: Keys become columns, values become rows (default).orient='index'
: Keys become index, values become columns (useful for transposed data).data = {'name': ['Alice', 'Bob'], 'age': [30, 25]} df = pd.DataFrame.from_dict(data, orient='columns') # Default behavior df_transposed = pd.DataFrame.from_dict(data, orient='index') print(df) print(df_transposed)
pandas.Series concatenation
- Suitable for creating a DataFrame from a single column or multiple Series:
name_series = pd.Series(['Alice', 'Bob']) age_series = pd.Series([30, 25]) df = pd.DataFrame({'name': name_series, 'age': age_series})
- If you need to build a DataFrame from individual Series, use
pandas.Series
concatenation. - For more control over column order or using dictionaries, consider
pandas.DataFrame.from_dict
. - If your data is a simple list of dictionaries or tuples with consistent structure,
pandas.DataFrame.from_records
is a good choice.