Exploring Alternatives to pandas.io.formats.style.Styler.use for DataFrame Styling


Purpose

  • These options can be broadly categorized into three areas:

    1. Applying styles
      This involves using methods like set_table_attributes and set_table_styles to define HTML attributes and CSS selectors for styling the table itself and its elements.
    2. Custom functions
      With apply or map, you can apply custom styling functions to individual cells or groups of cells within the DataFrame.
    3. Formatting
      You can use methods like format to format the text displayed in the cells.
  • It allows you to set various styling options for your DataFrame.

How it works

  1. You typically call .use after creating a Styler object from your DataFrame.
  2. Inside the .use method, you provide arguments corresponding to the desired styling options.
    • For example, to set background color for specific rows, you might use use(set_table_styles=[('tr:nth-child(even)', {'background-color': 'lightblue'})]).

Benefits of using Styler.use

  • Provides a way to customize the look and feel of your DataFrames to suit your specific needs.
  • Makes it easier to identify patterns and trends within the data.
  • Enhances readability and clarity of your DataFrames by highlighting important information visually.
  • Keep in mind that Styler.format is ignored when exporting to Excel due to formatting differences between Excel and HTML/CSS.


Example 1: Highlighting Negative Values

This example highlights negative values in a DataFrame red:

import pandas as pd

# Sample DataFrame
data = {'Col1': [10, -5, 2], 'Col2': [3, 7, -1]}
df = pd.DataFrame(data)

# Apply styling using Styler.use
def highlight_negative(s):
  return s.applymap(lambda x: 'color: red' if x < 0 else '')

styled_df = df.style.use(highlight_negative)

# Display the styled DataFrame
print(styled_df)

Example 2: Adding a Background Color to Rows

This example adds a light blue background color to even rows:

import pandas as pd

# Sample DataFrame
data = {'Col1': ['A', 'B', 'C'], 'Col2': [1, 2, 3]}
df = pd.DataFrame(data)

# Apply styling using Styler.use with set_table_styles
styled_df = df.style.use(
    set_table_styles=[('tr:nth-child(even)', {'background-color': 'lightblue'})]
)

# Display the styled DataFrame
print(styled_df)

Example 3: Formatting Numbers with Two Decimal Places

This example formats all numeric values in the DataFrame to display two decimal places:

import pandas as pd

# Sample DataFrame
data = {'Col1': [10.1234, 5.6789, 2.5]}
df = pd.DataFrame(data)

# Apply styling using Styler.format
styled_df = df.style.format("{:.2f}".format)

# Display the styled DataFrame
print(styled_df)


  1. Formatting with .apply and .map
  • This approach offers more flexibility compared to pre-defined styles in Styler.use.
  • You can use them for formatting tasks like:
    • Adding prefixes or suffixes to values.
    • Highlighting specific conditions with conditional formatting logic.
  • These methods allow you to apply custom functions to individual cells or groups of cells.

Example

import pandas as pd

def highlight_large(value):
  return f"<b>{value}</b>" if value > 10 else value

data = {'Col1': [5, 15, 8]}
df = pd.DataFrame(data)

styled_df = df.applymap(highlight_large)
print(styled_df)
  1. Third-party libraries
  • They might offer features like:
    • More pre-defined styles.
    • Integration with other visualization libraries.
    • Interactive styling options.
  • Libraries like Styler (not affiliated with pandas) or tabulate provide extended functionalities for DataFrame styling.

Example (using Styler library)

from styler import Styler

data = {'Col1': [10, -5, 2], 'Col2': [3, 7, -1]}
df = pd.DataFrame(data)

styled_df = Styler(df).theme('bootstrap').highlight_max().bar(axis=1)
print(styled_df)
  1. Exporting to formats with built-in styling
  • This approach can be quicker for basic formatting needs but might lack the flexibility of programmatic styling.
  • If your primary goal is data visualization, consider exporting the DataFrame to formats like Excel or HTML that allow built-in styling options.
  • Desired output format (HTML, console, etc.).
  • Need for programmatic control.
  • Complexity of your styling requirements.