Random Sampling in NumPy: Beyond the Non-existent void random_standard_uniform_fill()
Random Sampling
This refers to generating random numbers according to a specific probability distribution. In NumPy, therandom
module provides functions for various distributions.Uniform Distribution
This is a common distribution where values are equally likely to fall within a specified range.NumPy Arrays
NumPy excels at working with multidimensional arrays. Filling an array with random numbers is a common use case.
Using numpy.random.rand()
This function generates an array of random floats between 0 (inclusive) and 1 (exclusive).
import numpy as np
# Create an empty array of any shape
my_array = np.empty((3, 4))
# Fill the array with random floats between 0 and 1
np.random.rand(my_array.shape, out=my_array)
print(my_array)
Using numpy.random.uniform()
This function allows you to specify the lower and upper bound of the uniform distribution.
import numpy as np
# Create an empty array
my_array = np.empty((2, 2))
# Fill with random values between 5 and 10 (inclusive)
np.random.uniform(low=5, high=10, size=my_array.shape, out=my_array)
print(my_array)
Generating random integers within a range
This code uses numpy.random.randint
to generate random integers between a specified low (inclusive) and high (exclusive) bound.
import numpy as np
# Generate 10 random integers between 1 and 100 (inclusive)
random_ints = np.random.randint(low=1, high=101, size=10)
print(random_ints)
Specifying the size and shape of the random array
This code demonstrates controlling the size and shape of the output array with size
and shape
arguments.
import numpy as np
# Generate a 3x2 array of random floats between 0 and 1
random_array = np.random.rand(3, 2)
print(random_array)
Scaling the random values
This code shows how to scale the generated random values to a different range.
import numpy as np
# Generate 5 random floats between 0 and 1, then scale them to a range of 10 to 20
random_values = np.random.rand(5) * (20 - 10) + 10
print(random_values)
Seeding the random number generator (optional)
By default, NumPy's random number generator uses an unpredictable seed. To ensure reproducibility of your results, you can set a specific seed.
import numpy as np
# Set a seed for reproducibility
np.random.seed(10)
# Generate random values (results will be the same if you run this again)
random_values = np.random.rand(3)
print(random_values)
- Using numpy.random.rand()
This function directly generates an array of random floats between 0 (inclusive) and 1 (exclusive). You can then assign this array to your desired variable.
import numpy as np
# Create an empty array (optional)
my_array = np.empty((3, 4))
# Fill the array with random floats
my_array[:] = np.random.rand(my_array.shape) # Fills the entire array
print(my_array)
- Using numpy.random.uniform() with pre-allocation
Similar to the previous example, you can pre-allocate an array and then fill it with random values from a specific uniform distribution.
import numpy as np
# Create an empty array
my_array = np.empty((2, 2))
# Generate random values and assign them to the array
random_data = np.random.uniform(low=5, high=10, size=my_array.shape)
my_array[:] = random_data
print(my_array)
- Using vectorized operations (for advanced users)
For simple uniform distribution, you can leverage vectorized operations. This approach might be more concise but requires a bit more NumPy knowledge.
import numpy as np
# Create an empty array
my_array = np.empty((3, 4))
# Fill with ones and scale to the range (0, 1) (assuming float type)
my_array[:] = np.random.rand(1) # Generate a single random float
print(my_array)
Remember, these approaches don't modify an existing array in-place. They create a new array filled with random values.