Examining Month Ends in pandas: Alternatives to pandas.tseries.offsets.MonthEnd.is_on_offset


Data Offsets in pandas

pandas provides a powerful set of tools for working with time series data. Data offsets are essential components that represent fixed increments of time, allowing you to manipulate dates and times efficiently. The pandas.tseries.offsets module offers various offset classes like Day, Week, MonthEnd, and more.

MonthEnd Offset

The MonthEnd offset specifically refers to the end of a month. It's used to represent dates that fall on the last day of a month.

is_on_offset Method

The is_on_offset method is a common function found in many offset classes in pandas. It takes a date or datetime-like object as input and returns a boolean value indicating whether the date falls on the specific offset represented by the class.

In the case of MonthEnd.is_on_offset:

  • If the input date doesn't fall on the last day of a month (e.g., 2024-06-10), is_on_offset returns False.
  • If the input date coincides with the last day of a month (e.g., 2024-05-31), is_on_offset returns True.

Example

import pandas as pd

# Create a datetime object
date = pd.to_datetime('2024-06-10')

# Create a MonthEnd offset
month_end = pd.offsets.MonthEnd()

# Check if the date falls on the month end
is_month_end = month_end.is_on_offset(date)

print(is_month_end)  # Output: False (since June 10th is not the last day)
  • This method is helpful for tasks like filtering dates based on month ends, calculating end-of-month financial figures, or working with time series data that aligns with month boundaries.
  • It's versatile and can be used with various date or datetime objects.
  • MonthEnd.is_on_offset is specifically designed to check for month ends.


Checking Multiple Dates

import pandas as pd

# Create a list of dates
dates = ['2024-05-31', '2024-06-10', '2024-06-30']
dates = pd.to_datetime(dates)

# Create a MonthEnd offset
month_end = pd.offsets.MonthEnd()

# Check for month ends using list comprehension
is_month_ends = [month_end.is_on_offset(date) for date in dates]

print(is_month_ends)  # Output: [True, False, True]

Finding the Next Month End

import pandas as pd

# Current date
today = pd.Timestamp.today()

# Create a MonthEnd offset
month_end = pd.offsets.MonthEnd()

# If today is not a month end, calculate the next month end
if not month_end.is_on_offset(today):
    next_month_end = month_end + today

print(next_month_end)  # Prints the date of the next month end
import pandas as pd

# Sample time series data
data = {'date': ['2023-12-31', '2024-01-10', '2024-02-29', '2024-03-31', '2024-04-15'],
        'value': [100, 120, 150, 180, 210]}
df = pd.DataFrame(data)
df['date'] = pd.to_datetime(df['date'])

# Create a MonthEnd offset
month_end = pd.offsets.MonthEnd()

# Filter for month end dates
month_end_data = df[df['date'].dt.is_month_end]  # Using dt.is_month_end for efficiency

print(month_end_data)  # Prints rows where 'date' is a month end


Using dt.is_month_end

This is a more efficient and built-in way to check if a DateTimeIndex or Series contains month ends:

import pandas as pd

# Sample date
date = pd.to_datetime('2024-06-30')

# Check if it's month end
is_month_end = date.is_month_end

print(is_month_end)  # Output: True

Using vectorized comparison with DatetimeIndex.dayofmonth

This approach is vectorized and works well for DataFrames or Series:

import pandas as pd

# Sample dates
dates = pd.to_datetime(['2024-05-31', '2024-06-10', '2024-06-30'])

# Check if day of month is the last day
is_month_end = dates == dates.dt.max('D')

print(is_month_end)  # Output: [ True False  True]

Using numpy.where (less efficient for large datasets)

This method uses numpy.where to create a boolean mask:

import pandas as pd
import numpy as np

# Sample dates
dates = pd.to_datetime(['2024-05-31', '2024-06-10', '2024-06-30'])

# Check for month end using numpy
is_month_end = np.where(dates == dates.dt.max('D'), True, False)

print(is_month_end)  # Output: [ True False  True]
  • Avoid numpy.where for large datasets due to potential performance overhead.
  • When working with DataFrames or Series, dates == dates.dt.max('D') is a good vectorized alternative.
  • For single date checks, dt.is_month_end is the most readable and efficient option.