Vertical Stacking Masked Arrays in NumPy: ma.stack() vs. Alternatives


ma.stack() Function

In NumPy's Masked Array module (numpy.ma), ma.stack() is used to vertically stack (or concatenate) a sequence of masked arrays along a new axis. This is similar to np.stack() for regular NumPy arrays, but it handles masked elements appropriately.

Key Points

  • Mask Handling
    ma.stack() applies the stacking operation to both the data and the mask of the input arrays. This ensures that the resulting mask accurately reflects the masked elements in the original arrays.
  • Axis
    The axis parameter (optional, defaults to 0) determines the new axis for stacking. It starts from 0 (first axis) and goes up to the number of dimensions in the input arrays minus 1.
  • Output
    Returns a new masked array where the input arrays are stacked along the specified axis.
  • Input
    Takes a sequence of masked arrays (arrays).

Example

import numpy.ma as ma

# Create three masked arrays
arr1 = ma.array([1, 2, 3], mask=[False, True, False])
arr2 = ma.array([4, 5, 6], mask=[True, False, False])
arr3 = ma.array([7, 8, 9], mask=[False, True, False])

# Stack the arrays along axis 0 (vertically)
stacked_array = ma.stack((arr1, arr2, arr3))

print(stacked_array)

This code will output:

masked_array(data=[[ 1  2  3]
                   [--  5  6]
                   [ 7  8  9]],
             mask=[[False  True  False]
                   [ True  False  False]
                   [False  True  False]],
             fill_value=1e+20)

As you can see, the masked elements (--) are preserved in the stacked array, and the mask is correctly combined to reflect the masked values across the stacked arrays.

  • For more control over masking behavior, you might explore np.ma.concatenate() or np.ma.vstack(), which offer more flexibility for stacking masked arrays.
  • If the input arrays have different shapes (except for the dimension along the specified axis), ma.stack() will attempt to broadcast them to a common shape. Masked elements are treated as compatible with any value during broadcasting.


Stacking Along a Different Axis (Horizontal Concatenation)

import numpy.ma as ma

# Create masked arrays
arr1 = ma.array([[1, 2], [3, 4]], mask=[[False, True], [False, False]])
arr2 = ma.array([[5, 6], [7, 8]], mask=[[True, False], [False, True]])

# Stack horizontally along axis 1
stacked_array = ma.stack((arr1, arr2), axis=1)

print(stacked_array)

This code stacks arr1 and arr2 side-by-side, resulting in:

masked_array(data=[[ 1  2  5  6]
                   [ 3  4  7  8]],
             mask=[[False  True  True  False]
                   [False  False  False  True]],
             fill_value=1e+20)

Stacking with Broadcasting

import numpy.ma as ma

# Create masked arrays with different shapes
arr1 = ma.array([1, 2, 3], mask=[False, True, False])
arr2 = ma.array([[4, 5], [6, 7]], mask=[[True, False], [False, True]])

# Stack vertically (axis 0)
stacked_array = ma.stack((arr1, arr2))

print(stacked_array)

Here, arr1 is broadcast to match the shape of arr2 along axis 0. Masked elements are treated as compatible during broadcasting. The output will be:

masked_array(data=[[ 1  2  3]
                   [ 4  5  --]
                   [ 6  7  --]],
             mask=[[False  True  False]
                   [ True  False   True]
                   [False  False   True]],
             fill_value=1e+20)

Using np.ma.concatenate() for More Control

import numpy.ma as ma

# Masked arrays
arr1 = ma.array([1, 2, 3], mask=[False, True, False])
arr2 = ma.array([4, 5, 6], mask=[True, False, False])

# Concatenate vertically with custom handling for masked elements
concatenated_array = np.ma.concatenate([arr1, arr2], axis=0, fill_value=-1)  # Replace masked with -1

print(concatenated_array)

This example uses np.ma.concatenate() for vertical stacking, and sets the fill_value to -1 for masked elements in the result. The output becomes:

masked_array(data=[ 1  2  3  4  5  6],
             mask=[False  True  False  True  False  False],
             fill_value=-1.0)


np.ma.concatenate()

  • For example:
  • It allows you to specify the axis for stacking, handling of masked elements (e.g., filling with a specific value), and managing output data type.
  • This function offers more control over the stacking process compared to ma.stack().
import numpy.ma as ma

arr1 = ma.array([1, 2, 3], mask=[False, True, False])
arr2 = ma.array([4, 5, 6], mask=[True, False, False])

# Stack vertically, filling masked elements with -1
stacked_array = np.ma.concatenate([arr1, arr2], axis=0, fill_value=-1)

print(stacked_array)

Custom Stacking with a Loop

  • This approach offers more flexibility but can be less concise than using ma.stack() or np.ma.concatenate().
  • If you need more specific control over the stacking process or want to perform additional operations during stacking, you can create a loop to iterate through the arrays and combine them.
  • If you require highly customized stacking behavior, a custom approach using a loop might be necessary.
  • For more control over the stacking process, handling of masked elements, or combining stacking with other operations, np.ma.concatenate() is a better option.
  • If you need a simple vertical stacking with default mask handling, ma.stack() is a convenient choice.