Sorting NumPy Arrays with PyArray_Sort() in the NumPy C-API


Purpose

  • Offers flexibility in sorting criteria and handling of missing values.
  • Sorts the elements of a NumPy array in-place.

Arguments

  • kwds (optional): A dictionary of keyword arguments for further customization.
    • Less commonly used options like casting (how to handle data type casting during sorting) or bufferformat (memory layout control) might be specified here.
  • args (optional): A tuple of additional arguments that control the sorting behavior.
    • Can include:
      • axis (int): The axis along which to sort. Defaults to the last axis (0 for flattened arrays).
      • kind (str): The sorting algorithm to use. Options include 'quicksort', 'mergesort', 'heapsort', etc.
      • order (str or list): The sorting order. Can be 'ascending' (default), 'descending', or a list of column names for multi-dimensional arrays.
  • self: The NumPy array object to be sorted.

Return Value

  • Otherwise, a reference to the same NumPy array object (self) that has been sorted in-place.
  • NULL on failure (exception raised).

Key Points

  • For basic ascending or descending sorts, using the np.sort function from Python is often more convenient. However, the C-API function PyArray_Sort offers more low-level control and can be integrated into custom C extensions or performance-critical applications.
  • The args and kwds arguments provide fine-grained control over the sorting behavior. Refer to the official NumPy documentation for a complete list of options and their effects.
  • Modifications are made to the original array (self). If preservation of the original data is desired, create a copy before sorting using np.copy(self).

Example Usage (Illustrative, not actual code)

# Assuming a NumPy array 'arr' has already been created

// Sort 'arr' along the last axis in ascending order (default)
PyArray_Sort(arr, NULL, NULL);

// Sort 'arr' along axis 0 in descending order
PyObject *args = PyTuple_Pack(1, PyInt_FromLong(0));
PyArray_Sort(arr, args, PyDict_New());  // Empty kwds dictionary

// More complex sorting with custom arguments and keyword arguments
// (Refer to NumPy documentation for details on available options)
PyObject *args = (...);  // Create appropriate arguments tuple
PyObject *kwds = (...);  // Create appropriate keyword arguments dictionary
PyArray_Sort(arr, args, kwds);

// Check for errors (exception handling omitted for brevity)
if (PyErr_Occurred()) {
  PyErr_Print();
  // Handle errors appropriately
}
  • It's essential to check for errors using PyErr_Occurred() after calling PyArray_Sort. If an error occurs, PyErr_Print() can be used to display the error message, and appropriate error handling mechanisms should be implemented.


// Assuming a NumPy array 'arr' of shape (3, 4) has already been created

// Sort 'arr' along the last axis (axis=1) in ascending order (default)
PyArray_Sort(arr, PyTuple_Pack(1, PyInt_FromLong(1)), NULL);  // args for 'axis'

// Sort 'arr' along axis 0 in descending order
PyObject *args = PyTuple_Pack(2, PyInt_FromLong(0), PyUnicode_FromString("descending"));
PyArray_Sort(arr, args, PyDict_New());  // Empty kwds dictionary

// More complex sorting with custom arguments and keyword arguments

// **Example 1: Sorting by second column (axis=1) in descending order, ignoring missing values (NaNs)**
PyObject *args = PyTuple_Pack(2, PyInt_FromLong(1), PyUnicode_FromString("descending"));
PyObject *kwds = PyDict_New();
PyDict_SetItem(kwds, PyUnicode_FromString("na_position"), PyUnicode_FromString("ignore"));
PyArray_Sort(arr, args, kwds);

// **Example 2: Sorting a multi-dimensional array by the 'name' column and then by the 'age' column (lexicographic sort)**
PyObject *args = PyTuple_Pack(1, PyUnicode_FromString("['name', 'age']"));
PyArray_Sort(arr, args, NULL);
  1. PyTuple_Pack(1, PyInt_FromLong(1)): Creates a tuple containing an integer 1 (representing axis 1) for sorting along that axis.
  2. PyUnicode_FromString("descending"): Creates a Unicode string "descending" to specify descending order.
  3. PyDict_New(): Creates an empty dictionary for keyword arguments.
  4. PyDict_SetItem(kwds, ..., ...): Adds a key-value pair to the keyword arguments dictionary.
    • Key: "na_position" (Unicode string) to control handling of missing values.
    • Value: "ignore" (Unicode string) to instruct the sort to ignore missing values (NaNs).
  5. PyUnicode_FromString("['name', 'age']"): Creates a Unicode string representing a list ['name', 'age'] for sorting by multiple columns.


np.sort function (Python)

  • Example
  • Simpler and more concise
    This is the recommended approach for most cases, especially if you're primarily working in Python. The np.sort function offers a convenient interface for sorting NumPy arrays.
import numpy as np

arr = np.array([3, 1, 4, 2])

# Sort in ascending order (default)
sorted_arr = np.sort(arr)
print(sorted_arr)  # Output: [1 2 3 4]

# Sort along axis 1 for a 2D array
arr_2d = np.array([[2, 4], [1, 3]])
sorted_arr_2d = np.sort(arr_2d, axis=1)
print(sorted_arr_2d)  # Output: [[1 2] [3 4]]

# Sort in descending order
sorted_arr_desc = np.sort(arr, kind='mergesort')  # Mergesort for stability
print(sorted_arr_desc)  # Output: [4 3 2 1]

Other sorting functions from NumPy

  • np.argpartition (partial sorting and returns indices)
  • np.partition (partial sorting)
  • np.lexsort (lexicographic sort for strings or multi-dimensional arrays)
  • np.argsort (returns indices for sorting order)

These functions provide more specialized sorting capabilities, but np.sort is often sufficient for most common sorting needs.

  • For intricate sorting logic
    If you have very specific sorting requirements that aren't met by the built-in functions, you can implement your own sorting algorithm in C or Python. This approach offers maximum control but requires more development effort.